Turnover Chess - Valuing Pieces Talk
Created by Brazilian Designer Lúcio José Patrocínio Filho
Turn the Tide, Conquer the Board!
Turnover Chess - Valuing Pieces Talk
Created by Brazilian Designer Lúcio José Patrocínio Filho
Turn the Tide, Conquer the Board!
In Turnover Chess, the way pieces are valued is different from standard chess. The value of each piece is based on its role in the game, its mobility, and its ability to control the board.
Correspondence with traditional chess:
Wall: Pawn
Fort: Bishop
Citadel: Queen
Fortress: Knight
Tower: Rook
Castle: Pawn, King
It is common to assign the Tower (Rook) a value of 3 points, the Fort (Bishop) a value of 2 points, and the Wall (Pawn) a value of 1 point, as this reflects the relative strength of each main piece and the role it plays in the game.
The Tower is a powerful piece that can control a large area of the board and can be used for attacking and defending, as well as promoting a Fortress to the last row. However, the Tower start the game as central pieces of each Castle and as the game progresses, they tend to end up positioned in the rear, which limits their movements due to friendly pieces.
The Fort is a versatile piece that can control a diagonal area of the board and can be used for attacking and defending, as well as supporting the turning of Towers into Citadels or Walls into Fortress, and to perform forward attacks as a Citadel (Joan of Arc move) as shown below.
In standard chess, both the Fort and Tower are considered strong pieces. In Turnover Chess, players have access to 8 Towers and 8 Forts at the same time, making it a dream come true for any chess player.
Power + Mobility + Turning + Take
Power: It's a measure of how much an individual piece can influence the game.
Tower: +3
Fort: +2
Wall: +1
Mobility: It's a measure of how many squares a piece can control and the potential for the piece to influence the game. This factor is also a numerical value, from the number of squares a piece can move to.
1 or 2 squares = +1
3 squares = +2
Multiple squares = +3
Tower: +3
Fort: +3
Citadel: +3
Fortress: +2
Castle: +1
Wall: +1
Turning: It's a measure of the piece's ability to combine with another piece, like a Wall with a Fort or a Fort with a Tower, this factor is also a numerical value, which adds +1 or +½ for each ability to combine, not considering if it is a friendly or enemy piece, as well as the range.
Tower: +2 points
Combined with Fort, becomes a Citadel
Combined with Fortress, becomes a Castle
Fort: +2 points
Combined with Tower, becomes a Citadel
Combined with Wall, becomes a Fortress
Citadel: +2 points
Combined with Tower, becomes a Citadel
Combined with Wall, becomes a Fortress
Wall: combines in frontward and diagonal forward: +1 point
Combined with Fort, becomes a Fortress ½
Combined with Citadel, becomes a Castle ½
Promotion: becomes a Citadel
When reaches a Citadel on the last row
Fortress: +3 points
Combined with Fort, becomes a Fortress
Combined with Citadel, becomes a Castle
Promotion: becomes a Citadel
When reaches an empty square on the last row
When reaches a Citadel on the last row
Castle: +2 points
in frontward 1-2 squares:
Combined with Fort, becomes a Fortress ½
Combined with friendly Citadel, becomes a Castle ½
Promotion: becomes a Citadel
When reaches a friendly Citadel on the last row
Castle in castle move in any direction one square: does not combine with any piece
Take: It's a measure of the piece's ability to remove an enemy piece from the board, like a Wall to a Castle or a Fort to another Fort, this offensive factor is also a numerical value, which adds +1 or +½ for each ability to take.
Tower: +4 points
Takes Tower
Takes Castle
Takes Wall
Takes Citadel
Fort: +4 points
Takes Fort
Takes Castle
Takes Citadel
Takes Fortress
Citadel: +4 points
Takes Fort
Takes Castle
Takes Citadel
Takes Fortress
Fortress: +4 points
Takes Wall
Takes Castle
Takes Tower
Takes Fortress
Wall takes in diagonal forward: +2 points
Takes Wall ½
Takes Castle ½
Takes Tower ½
Takes Fortress ½
Castle takes in any direction: +3 points
Takes Castle ½
Takes Tower ½
Takes Citadel ½
Takes Wall ½
Takes Fortress ½
Takes Fort ½
In conclusion, with this formula, at any turn of the match, players can calculate the values on board to better understand how good he is performing the match and as Turnover Chess is much more complex than standard chess, its formula could not be less complex, maybe it will need an app to easily take the results.
The final result will be as follows:
Citadel: 14
Tower: 12
Fortress: 12
Fort: 11
Castle: 6
Wall: 5
The final proposal will be as follows:
Citadel: 3
Fort: 2
Tower: 2
Fortress: 2
Castle: 1
Wall: 0